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On the modeling of microscopic switching phenomena in tetragonal ferroelectric materials
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Abstract

Ferroelectric materials play a key role for the functionality of many high-tech electro-mechanically coupled devices, as for instance in
actuator and sensor technology, and are therefore of great interest for both industry and science. In general, these materials are char-
acterized by a pronounced electro-mechanical coupling. However, when applied to high electrical or mechanical fields,the material
response becomes highly nonlinear. This results in an electro-mechanical hysteretic behavior, which is due to polarization switching
in the microstructure of the material. Under electric loading, the well-known ferroelectric butterfly and dielectric hysteresis loops can
be observed. On the other hand, polarization switching can also be induced when the material is exposed to high mechanical loads,
which results in ferroelastic-type hystereses. Such nonlinear electro-mechanically coupled behavior is crucial forthe prediction and
the analysis of ferroelectric devices. Therefore, reliable models for the mathematical description of the complex, ferroelectric material
behavior have to be formulated, which account for the mentioned nonlinearities. The present work will discuss a microscopically
motivated switching criterion that is capable of reflectingthe ferroelectric and ferroelastic hysteresis from a microscopic view point.
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1. Introduction

Switching phenomena in ferroelectric materials have exten-
sively been studied both with experimental and theoreticalmeth-
ods and are still part of current research. For a general overview
of the ferroelectric effect the reader is referred e.g. to the stan-
dard text books JAFFE ET AL. [2] and LINES & GLASS [7]. A
review paper on the constitutive modeling of the ferroelectric and
ferroelastic effect as well as the basic properties of ferroelectric
ceramics is given by KAMLAH [3].

In general, ferroelectric materials as e.g. BaTiO3 have a crys-
talline structure. The main characteristic of such ferroelectric
materials is their inherentspontaneous polarizationwhich is a
microscopic property of the material. In case of BaTiO3, this
spontaneous polarization is the result of a phase transition from
a cubic to a tetragonal phase which occurs at a certain tem-
perature, the so-called Curie temperature. Below this tempera-
ture barrier, the tetragonal unit cells of the crystalline ferroelec-
tric possess a spontaneous polarization and are therefore termed
spontaneously polarized. However, it has to be distinguished be-
tween the above mentioned microscopic properties and the result-
ing overall macroscopic properties of the underlying material, in
this context see also SCHRÖDER & K EIP [9]. Since each mi-
croscopic spontaneous polarization is characterized by a certain
amount and a certain direction in space, the resulting macroscopic
polarization can strongly differ from the corresponding micro-
scopic counterpart.

When dealing with the constitutive modeling of such ferro-
electric materials, it has be distinguished between microscopi-
cally and macroscopically based formulations of the ferroelectric
material behavior. The macroscopic material models understand
the polarization as a macroscopic property and are thus mostly
formulated based on a macroscopic, phenomenological theory,
see e.g. LANDIS [6] and KLINKEL [5]. A phenomenological,

mesoscopically motivated model is given by SCHRÖDER& RO-
MANOWSKI [10]. On the other hand, microscopic models re-
fer to the polarization as a discrete microscopic property and are
therefore formulated by means of discrete switching criteria, see
e.g. HWANG ET AL . [1].

The present work focuses on the description of polarization
switching as a microscopic phenomenon. The microscopic for-
mulation will be given in terms of a coordinate-invariant electric
enthalpy function for tetragonal ferroelectric crystals.

2. Electro-mechanically coupled boundary value problem

Let B be the body of interest that is parameterized inx.
Furthermore, letu denote the displacement field andφ the
scalar electric potential. The governing balance equations for the
electro-mechanical boundary value problem are the balanceof
momentum and Gauß’s law

divσ + f = 0 and divD = ρf in B, (1)

whereσ denotes the mechanical stress tensor,f the vector of
body forces,D is the vector of electric displacements, andρf

is the density of free charge carriers. The basic kinematical re-
lations are given by the mechanical linear strain tensor andthe
electric field vector

ε =
1

2
(gradu + gradT

u) and E = −gradφ. (2)

To account for the dissipative nature of the material, the mechan-
ical strains and the electric displacements are additivelysplitted
into a reversible, elastic and an irreversible, remanent part

ε = ε
e + ε

r and D = D
e + P

r
, (3)

whereP r denotes the remanent polarization vector.
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3. Electric enthalpy function in tetragonal setting

The description of the ferroelectric material will be realized
by means of a coordinate-invariant formulation of the electric en-
thalpy function in tetragonal setting, see KEIP & SCHRÖDER[4].
In this context, the tetragonal structure of the material isdefined
by means of three perpendicular crystallographic axesa1, a2,
anda3 = c with ‖a(•)‖ = 1, wherec represents the normal-
ized preferred direction of the tetragonal unit cell. Basedon that,
the electric enthalpy function can be given as an additive function
of a mechanical, piezoelectric, and dielectric part as

H = Hmech + Hpiezo + Hdiel, (4)

where the individual terms are given as

Hmech =
1

2
λ I

2
1 + µ I2 +

1

2
α1 I

2
5 + α2 I1 I5

+
1

2
α3 (I2

3 + I
2
4 ) +

1

2
α4 (I2

5 + I
2
6 + I

2
7 ),

Hpiezo = β1 K1 + β2 I1 J2 + β3 I5 J2,

Hdiel =
1

2
γ1 J1 +

1

2
(γ2 − γ1) J

2
2 − J2Ps. (5)

The underlying principal and mixed invariants are defined as

I1 = tr[εe], I2 = tr[(εe)2], I3 = tr[εe
Ξ1], I4 = tr[εe

Ξ2],

I5 = tr[εe
M 33], I6 = tr[εe

M 11], I7 = tr[εe
M 22], (6)

J1 = tr[E ⊗ E], J2 = tr[E ⊗ c], K1 = tr[E ⊗ (Ξ3 : ε
e)],

wherein the structural tensors denote

M ij = ai ⊗ aj ,

Ξ1 = (M 13 + M 31), Ξ2 = (M 23 + M 32), (7)

Ξ3 =
3

X

i=1

(ai ⊗ ai ⊗ c + ai ⊗ c ⊗ ai) .

The coordinate-invariant material parameters are given by
λ, µ, α1, α2, α3, α4 for the mechanical part,β1, β2, β3 for the
piezoelectric part, andγ1, γ2 for the dielectric part;Ps is the
spontaneous polarization. Regarding the formulation of coor-
dinate invariant energies for piezoelectric solids including the
identification of material parameters the reader is referred to
SCHRÖDER& GROSS[8].

4. Microscopic switching model

The present work utilizes a microscopically motivated, en-
ergy based ferroelectric/ferroelastic switching criterion for the
modeling of the nonlinear switching effects in ferroelectric ma-
terials. The switching condition for the tetragonal unit cells is
based on the change of the free energy as

dW = dWelec + dWmech = E · dD + σ · dε, (8)

compare e.g. HWANG ET AL . [1]. Herein, the change of electric
energydWelec can be approximated by the product of the electric
field and the change of polarization during a discrete switching
event, i.e.

∆Welec =

Z

dWelec ≈ E · ∆D = E · ∆P
r
, (9)

supposed that the electric field stays constant and linear effects
of the electric displacement are not taken into account during
switching. On the other hand, supposed that the stresses stay con-
stant during a discrete switching event, the change of mechanical
energydWmech can be approximated by the product of the me-
chanical stresses and the change of remanent strains, i.e.

∆Wmech =

Z

dWmech ≈ σ · ∆ε = σ · ∆ε
r
. (10)

The electric work that dissipates during the switching process can
be given by

Wdiss
e,180◦ = 2 Ps Ec and Wdiss

e,90◦ =
√

2 Ps Ec (11)

for 180◦ switching and90◦ switching, respectively;Ec denotes
the coercive electric field strength. Based on that, purely ferro-
electric switching initiates whenever a critical energy barrier is
reached, i.e.∆Welec ≥ Wdiss

e,180◦/90◦ . This results in five switch-
ing criteria for five variants of ferroelectric switching ina tetrag-
onal unit cell

E · ∆P
r
180◦ ≥ Wdiss

e,180◦ and E · ∆P
r
i,90◦ ≥ Wdiss

e,90◦ (12)

for i = 1, ..., 4. In the present work, the polarization vector as
well as the remanent strains are directly connected to the crystal
lattice in the sense thatP r = Ps c andεr = 3

2
εs dev(c ⊗ c),

whereεs denotes the saturation strain. Due to this fact, a change
of polarization goes along with a change of the crystal lattice
orientation resulting in a corresponding update of the constitu-
tive mechanical, piezoelectric, and dielectric moduli which can
be computed from the electric enthalpy function given in (5).
For the onset of mechanically induced switching, similar switch-
ing criteria to the one formulated above can be derived, see
e.g. HWANG ET AL . [1].

References

[1] Hwang, S. C., Lynch, C. S., and McMeeking, R.M., Ferro-
electric/ferroelastic interactions and a polarization switch-
ing model,Acta Metall. Mater., 43, pp. 2073-2084, 1995.

[2] Jaffe, B., Cook Jr., W. R. and Jaffe, H.,Piezoelectric ceram-
ics, Academic Press, London and New York, 1971.

[3] Kamlah, M., Ferroelectric and ferroelastic piezoceramics –
modeling of electromechanical hysteresis phenomena,Con-
tinuum Mech. Thermodyn., 13, pp. 219-268, 2001.

[4] Keip, M.-A. and Schröder, J., A tetragonal switching model
for ferroelectric materials,Proc. Appl. Math. Mech., 10, pp.
369-370, 2010.

[5] Klinkel, S., A phenomenological constitutive model forfer-
roelastic and ferroelectric hysteresis effects in ferroelectric
ceramics,Int. J. Solids Struct., 43, pp. 7197-7222, 2006.

[6] Landis, C. M., Fully coupled, multi-axial, symmetric con-
stitutive laws for polycrystalline ferroelectric ceramics, J.
Mech. Phys. Solids, 50, pp. 127-152, 2002.

[7] Lines, M. E. and Glass, A. M.,Principles and applications
of ferroelectrics and related materials, Clarendon Press,
Oxford, 1977.

[8] Schröder, J., and Gross, D., Invariant formulation of
the electromechanical enthalpy function of transversely
isotropic piezoelectric materials,Arch. Appl. Mech., 73, pp.
533-552, 2004.

[9] Schröder, J. and Keip, M.-A., Multiscale modeling of
electro-mechanically coupled materials: homogenization
procedure and computation of overall moduli,IUTAM sym-
posium on multiscale modeling of fatigue, damage and frac-
ture in smart materials, M. Kuna and A. Ricoeur, Ed., IU-
TAM Bookseries, Springer, Vol. 24, pp. 265-276, 2011.

[10] Schröder, J., and Romanowski, H., A thermodynamically
consistent mesoscopic model for transversely isotropic fer-
roelectric ceramics in a coordinate-invariant setting,Arch.
Appl. Mech., 74, pp. 863-877, 2005.


